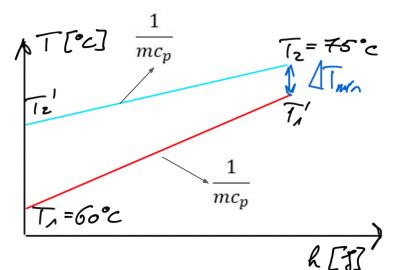


DTmin optimization

Nour Boulos

Advanced Energetics

Pasteurisation Section - Past 5



To do

- Initialization: Plot T vs Q and identify DTmin
- Investment costs (CAPEX)
 - HEX area
 - HEX costs
 - HEX annualised costs
- Operating costs (OPEX)
 - Heating costs
 - Cooling costs

Initialisation

- $T_{cream0} = T_1 = 60$ °C (cold stream)
- $T_{crpastb} = T_2 = 75^{\circ}C$ (hot stream)
- $(m \cdot c_p)_{\text{cold}} \leq (m \cdot c_p)_{\text{hot}}$
- T_1' and T_2' must be optimized

- Thanks to $\frac{1}{mc_p}$ slopes, one can see that the ΔT_{min} occurs between T_2 and T_1' !
- $T_1' = T_2 \Delta T_{min}$
- Energy balance is required to find T₂'

Investment costs (CAPEX) – HEX area

■
$$A_{ex} = \frac{\dot{Q}_{ex}}{U \cdot LMTD}$$

• $\frac{1}{U} = \frac{1}{\alpha_{cold}} + \frac{e}{\lambda} + \frac{1}{\alpha_{hot}}$

■ e : thickness [m]

■ λ : thermal conductivity $\left[\frac{kW}{m \cdot K}\right]$

■ α : heat transfer coefficient $\left[\frac{kW}{m^2 \cdot K}\right]$

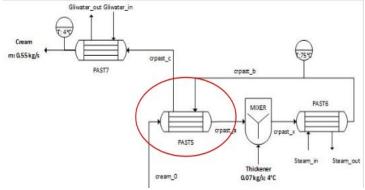
■ Assumptions: $e \ll 1$; $\alpha_{cold} \approx \alpha_{hot} \rightarrow U = \frac{\alpha}{2}$

• $LMTD = \frac{(T_{h,in} - T_{c,out}) - (T_{c,in} - T_{h,out})}{ln(\frac{T_{h,in} - T_{c,out}}{T_{c,in} - T_{h,out}})}$

Investment costs (CAPEX) – purchased costs

•
$$C_p = \frac{I_t}{I_{t,ref}} \cdot 10^{k_1 + k_2(\log(A_{ex}))}$$
, for k_1 and k_2 see Turton p.913 [\$]

•
$$C_{BM} = F_{BM} \cdot C_p \cdot e$$
 e : currency exchange rate $\begin{bmatrix} CHF/\$ \end{bmatrix}$


Investment costs (CAPEX) – annualisation

- Annualization factor : $a_n = \frac{i(1+i)^n}{(1+i)^n-1}$
 - *i* : investment rate [-]
 - *n* : number of years [-]
- $IC_{ex} = C_{BM} \cdot a_n$

Operating costs (OPEX) – heating costs

- 1. Calculate the outlet temperature of the mixer
- Calculate the new heat load of HEX past6
- Calculate the heating costs linked to this heat load using price of natural gas and boiler efficiency

$$OC_{heating} = c_{ng} \cdot \dot{Q}_{ng} \cdot t_{op} = c_{ng} \cdot \frac{\dot{Q}_{past6}}{\eta_{boiler}} \cdot t_{op}$$

$$\frac{\text{Units}}{\bullet \quad c_{ng}} \quad [^{CHF}/_{KWh}]$$

Operating costs (OPEX) – cooling costs

- 1. Calculate the new heat load in cr_{past7}
- 2. Calculate the electric work required by the refrigerant cycle

$$\dot{W}_{elec} = \frac{\dot{Q}_{past7}}{COP}$$

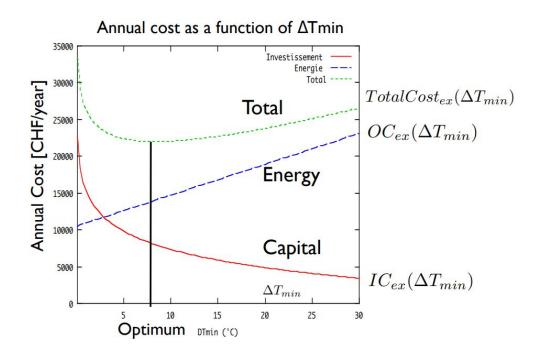
3. Calculate the required mass of cooling water

$$\dot{Q}_{water} = \dot{Q}_{past7} + \dot{W}_{elec}$$

$$\dot{m}_{water} = \frac{\dot{Q}_{water}}{c_{p,water}}$$

4. The resulting operating costs are:

$$\begin{aligned} OC_{elec} &= \dot{W}_{elec} \cdot c_{elec} \cdot t_{op} \\ OC_{water} &= \dot{m}_{water} \cdot c_{water} \cdot t_{op} \end{aligned}$$


5.
$$OPEX = OC_{water} + OC_{elec}$$

Units

- c_{elec} [CHF/ $_{KWh}$]
- c_{water} $\begin{bmatrix} CHF/kg \end{bmatrix}$

Conclusion

- TOTEX = OPEX + CAPEX
- Final goal : find the value of ΔT_{min} which minimize the total costs !

